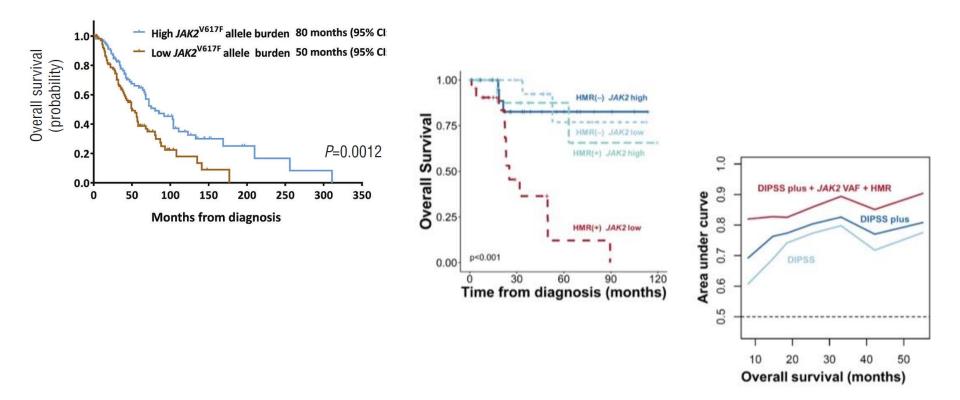
What is disease modification in myelofibrosis?

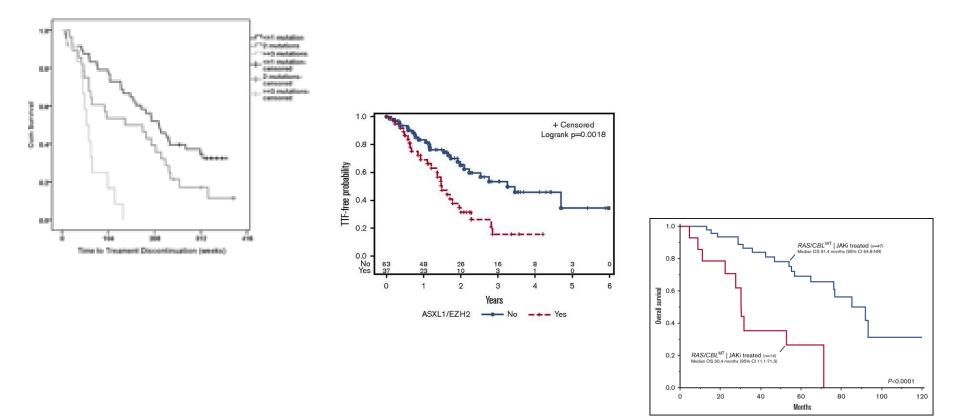
Andreas Reiter Department of Hematology and Oncology University Hospital Mannheim Heidelberg University Germany

Medizinische Fakultät Mannheim der Universität Heidelberg

Universitätsklinikum Mannheim

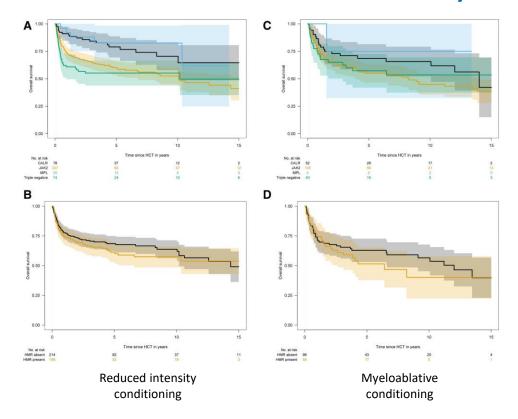

Disclosures

Name of Company	Research support (clinical trials)	Consultant/ Scientific Advisory Board	Honoraria	Travel reimbursement
Blueprint	х	x	x	х
Novartis	x	x	x	x
BMS	x	х	x	x
АОР	x	x	x	x
GSK	x	х	x	x
Abbvie	x	x	x	x
Incyte	x	х		
Cogent	x	x		
Astra Zeneca	x			

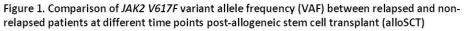

- Disease modification in MF is defined as therapy that exerts a clinically meaningful impact on survival outcomes and/or restoration of normal hematopoiesis in conjunction with improvement in bone marrow fibrosis through a substantial and durable reduction in the clonal burden of disease.
- To prevent progression, we must deplete MPN stem cells and disarm the tumor-promoting microenvironment, which will require the use of strategies utilizing approaches that target pathwavs beyond JAK/STAT signaling. JAK2 inhibitors are <u>NOT</u> the only target for effective drug development.

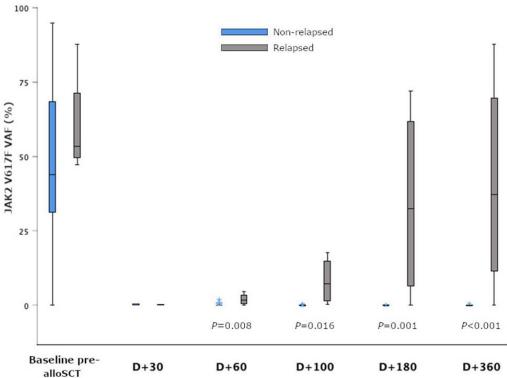
Disease modification in MF is defined as therapy. ٠ **Reticulin and collagen** fibrosis, osteoscelerosis meaningful impact on survival outcomes and/or restoration hematopoiesis in conjunction with improvement in bone marrow fibrosis stial and durable reduction in the clonal burden of disease. through a su Multifactorial reasons for cytopenias, te MPN stem cells and beside fibrosis, e.g. dysplasia, inflammation, splenomegaly, toxicity **Complex genetics monment**, which will require tumor-prom strategies utilizing approaches that target pathwavs beyond JAK/STAT signaling. JAK2 inhibitors are **NOT** the only target for effective drug development.

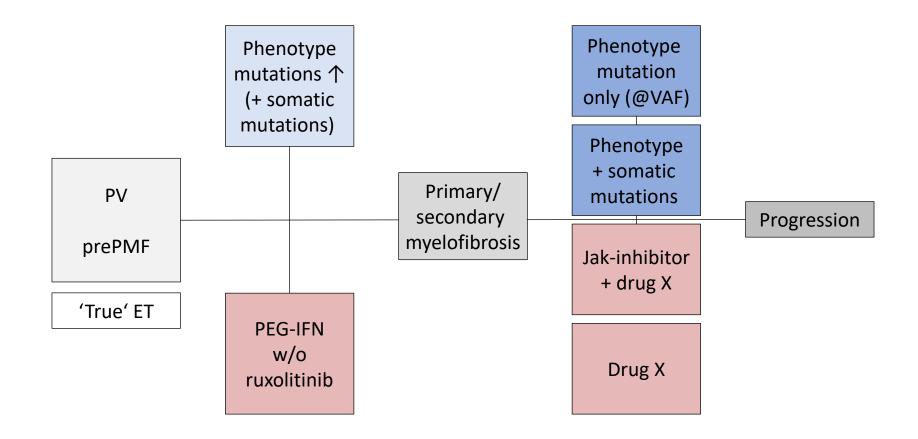
HMR Mutations Drive Poor Prognosis in Myelofibrosis Patients with Lower JAK2V617F Allele Burden but Not in Those with Higher Allele Burden: Results of a Multicenter Study


Impact of genomics on response to Jak inhibitor therapy

Patel et al., Blood 2015; Spiegel et al., Blood Adv. 2017; Coltro et al., Blood Adv. 2020


Parameters	Rationale	Supporting Data From Novel Agents	Limitations			
Primary outcomes of disease modification						
Overall survival (event-, progression- or leukemia-free survival)	 Most critical outcomes of any life-threatening disease treatment 	 Not generally a primary end point Imetelstat and tagraxofusup reported median OS of 30 and 31 mo, respectively 	 Require lengthy follow-up may not be compatible with timelines for drug approval 			
Key modifiers						
Bone marrow fibrosis	 contributes to splenomegaly and cytopenias directly influences OS allo-SCT leads to reversal 	 Improvement corelated with OS: Imetelstat Improvement reported by: pelabresib, bomedemstat, navitoclax, navtemadlin 	 Uncertainties on grading and timing Only significant if associated with improvement of cytopenias 			
Clonal disease/ mutational burden	 Correlated with phenotype and progression/evolution 	 Reduction correlated with OS: Imetelstat Reductions reported by: bomedemstat, navitoclax, navtemadlin 	 Uncertainties on importance (driver mutations, additional mutations, clonal hematopoiesis), standardization, grading, timing and association with OS 			
Inflammatory cytokine signature	 Key modifier of the BM microenvironment and promoter of malignant hematopoiesis 	 Reductions demonstrated by: pelabresib, navitoclax, navtemadlin 	 Uncertainties upon association with survival outcomes 			


High Molecular and Cytogenetic Risk in Myelofibrosis Does Not Benefit From Higher Intensity Conditioning Before Hematopoietic Cell Transplantation: An International Collaborative Analysis



Gagelmann et al., HemaSphere 2022

Sensitive Molecular Detection of *JAK2* V617F Is a Predictive Marker of Relapse in Patients with Myelofibrosis after Allogeneic Stem Cell Transplantation

Disease modification in advanced systemic mastocytosis

0.7 0.6

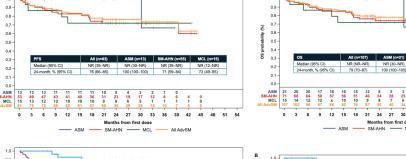
0.5

0.4

0.1

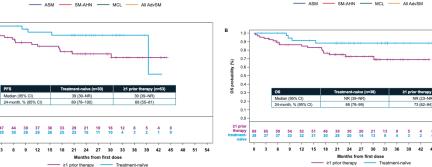
0.2

0.1


0.0

≥1 pric therapy

AdvSM


- ASM, SM-AHN, MCL
- KIT D816V (>95%)
- Somatic mutations (~60-80%, prognosis!!!)
- Chromosomal abnormalities (~20-30%)
- Multilineage involvement

RESPONSE

- Complete elimination of BM MC aggregates (70%)
- Reduction of serum tryptase <20 ng/mL (61%)
- KIT D816V <1% (58%)
- Palpable \rightarrow non-palpable spleen (74%)
- Mutations negative and BM, tryptase and/or KIT D816F VAF early!!! positive predictors of outcome

Progression-free survival according to subtype and prior treatment

Overall survival according to subtype and prior treatment

PROGRESSION

- Frequently AHN, e.g. secondary AML
- Known and new somatic mutations •

+ CENSORED

+ CENSORED

Conclusion

- Several clinical end points, e.g. SVR35 and RBC-TI, have been shown to correlate with OS.
- Improvment of fibrosis and clonal disease burden as surrogates for PFS/OS have yet to be convincingly demonstrated.
- The JAK/STAT pathway remains a pivotal target but best end points and appropriate timing in the early stages of clinical trials may be different for JAKi combinations and novel pathways.
- Standardization and harmonization of inclusion criteria and response assessment is crucial in 1L but particularly 2L setting.
- Greatest impact will be observed when initiated early, before clonal evolution.